Eco Changes is the Mitsubishi Electric Group's environmental statement, and expresses the Group's stance on environmental management. Through a wide range of businesses, we are helping contribute to the realization of a sustainable society.

2nd Edition
Utilizing its technological prowess and extensive experience, Mitsubishi Electric has remained a leader in the vertical transportation market since entering the business in 1931. The Company’s creative, innovative spirit, represented by production of the world’s first spiral escalator and elevator group-control systems that use artificial-intelligence technologies, continues to receive high evaluations industry-wide. Our products and systems are renowned for their high levels of quality, reliability and safety; and it is this sense of security and trust fostered with building owners and end-users alike that has led to the global expansion of our elevator/escalator business and the after-sales network to service it.

We understand responsibilities as a good corporate citizen, and continue to implement measures for protecting the environment and ensuring a sustainable society for future generations. A number of original technologies are being introduced to ensure more efficient products, systems and manufacturing operations, thereby enhancing productivity, reducing energy consumption and providing smoother, faster and more comfortable vertical transportation systems.
Based on our policy, “Quality in Motion”, we provide elevators and escalators that will satisfy our customers with high levels of comfort, efficiency, ecology and safety.

We strive to be green in all of our business activities. We take every action to reduce environmental burden during each process of our elevators’ and escalators’ lifecycle.

Mitsubishi Elevators, escalators and building management systems are always evolving, helping achieve our goal of being the No.1 brand in quality. In order to satisfy customers in all aspects of comfort, efficiency and safety while realizing a sustainable society, quality must be of the highest level in all products and business activities, while priority is placed on consideration for the environment. As the times change, Mitsubishi Elevator promises to utilize the collective strengths of its advanced and environmental technologies to offer its customers safe and reliable products while contributing to society.

Contents

- Introduction 9–11
- Ecology 7–8
- Efficiency 9–11
- Space-saving 12
- Safety 13–14
- Standard Design 15
- Features 16–18
- Basic Specifications 19–21
- Important Information on Elevator Planning 22

Application

Note: The applicable range of the rated capacity may differ depending on the manufacturing factory, please consult our local agents for details.

<table>
<thead>
<tr>
<th>(m/sec)</th>
<th>450</th>
<th>550</th>
<th>650</th>
<th>825</th>
<th>1050</th>
<th>1275</th>
<th>1350</th>
<th>1600</th>
</tr>
</thead>
<tbody>
<tr>
<td>(kg)</td>
<td>825</td>
<td>630</td>
<td>550</td>
<td>1050</td>
<td>1275</td>
<td>1350</td>
<td>1600</td>
<td>1350</td>
</tr>
</tbody>
</table>

Note: The applicable range of the rated capacity may differ depending on the manufacturing factory, please consult our local agents for details.
Welcome to a New Era in Vertical Transportation
Introducing the NEXIEZ...

...technologically advanced elevators that consume less power, have minimal impact on the global environment and harmoniously serve people and buildings with smooth, seamless operation. The refined design produces a high-quality atmosphere that reassures passengers of the superior safety and comfort synonymous with Mitsubishi Electric products. Regardless of the use or purpose, the NEXIEZ is a best match solution for virtually any elevator installation.
Regenerative Converter (PCNV) (Optional)

Elevators usually travel using power from a power supply (powered operation); however, when they travel down with a heavy car load or up with a light car load (regenerative operation), the traction machine functions as a power generator.

Although the power generated during traction machine operation is usually dissipated as heat, the regenerative converter transmits the power back to the distribution transformer and feeds it into the electrical network in the building along with electricity from the power supply. Compared to the same type of elevator without a regenerative converter, this system provides an energy-saving effect of up to 35%. (Reduction in CO₂ emissions: 1400 kg/year)

In addition, the regenerative converter has the effect of decreasing harmonic currents.

Max. energy-saving effects: 35%

Advantages of LEDs

- Service life (hr): 25,000
- Power consumption (W): 132

- Approximately 12.5 times longer
- Approximately 75% reduction

Using Energy Wisely

Our long-term commitment to developing energy-efficient elevators has created systems and functions that make intelligent use of power.

Milestones of Energy-saving Technologies in Elevator Development

- 1970: Worm geared
- 1980: Induction motor
- 1990: Permanent-magnet motor
- 2000: VVVF control
- 2010: Microcomputer

Notes:
- *1: Alternative current, variable voltage
- *2: Variable voltage, variable frequency
- *3: CO₂ emissions in this table are from elevator operation and do not include emissions from manufacturing, transportation and other processes.
- *4: Calculated from power consumption with a coefficient of 0.6 kg/kWh.
- *5: The CO₂ emissions values in this table vary according to conditions.

Reusing Energy

Using Energy Wisely

Our long-term commitment to developing energy-efficient elevators has created systems and functions that make intelligent use of power.

Ecology

Reusing Energy

Using Energy Wisely

Our long-term commitment to developing energy-efficient elevators has created systems and functions that make intelligent use of power.

Maximizing Operational Efficiency and Minimizing Energy Consumption

Energy-saving Operation – Allocation Control (ESO-W) (LJA1-2200C only)

This system selects the elevator in a group that best balances operational efficiency and energy consumption. Priority is given to operational efficiency during peak hours and energy efficiency during non-peak hours.

Through a maximum 10% reduction in energy consumption compared to our conventional system, this system allows building owners to cut energy costs without sacrificing passenger convenience.

Using Energy Wisely

Our long-term commitment to developing energy-efficient elevators has created systems and functions that make intelligent use of power.

Maximizing Operational Efficiency and Minimizing Energy Consumption

Energy-saving Operation – Allocation Control (ESO-W) (LJA1-2200C only)

This system selects the elevator in a group that best balances operational efficiency and energy consumption. Priority is given to operational efficiency during peak hours and energy efficiency during non-peak hours.

Through a maximum 10% reduction in energy consumption compared to our conventional system, this system allows building owners to cut energy costs without sacrificing passenger convenience.

Using Energy Wisely

Our long-term commitment to developing energy-efficient elevators has created systems and functions that make intelligent use of power.

Maximizing Operational Efficiency and Minimizing Energy Consumption

Energy-saving Operation – Allocation Control (ESO-W) (LJA1-2200C only)

This system selects the elevator in a group that best balances operational efficiency and energy consumption. Priority is given to operational efficiency during peak hours and energy efficiency during non-peak hours.

Through a maximum 10% reduction in energy consumption compared to our conventional system, this system allows building owners to cut energy costs without sacrificing passenger convenience.

Using Energy Wisely

Our long-term commitment to developing energy-efficient elevators has created systems and functions that make intelligent use of power.

Maximizing Operational Efficiency and Minimizing Energy Consumption

Energy-saving Operation – Allocation Control (ESO-W) (LJA1-2200C only)

This system selects the elevator in a group that best balances operational efficiency and energy consumption. Priority is given to operational efficiency during peak hours and energy efficiency during non-peak hours.

Through a maximum 10% reduction in energy consumption compared to our conventional system, this system allows building owners to cut energy costs without sacrificing passenger convenience.

Using Energy Wisely

Our long-term commitment to developing energy-efficient elevators has created systems and functions that make intelligent use of power.

Maximizing Operational Efficiency and Minimizing Energy Consumption

Energy-saving Operation – Allocation Control (ESO-W) (LJA1-2200C only)

This system selects the elevator in a group that best balances operational efficiency and energy consumption. Priority is given to operational efficiency during peak hours and energy efficiency during non-peak hours.

Through a maximum 10% reduction in energy consumption compared to our conventional system, this system allows building owners to cut energy costs without sacrificing passenger convenience.

Using Energy Wisely

Our long-term commitment to developing energy-efficient elevators has created systems and functions that make intelligent use of power.

Maximizing Operational Efficiency and Minimizing Energy Consumption

Energy-saving Operation – Allocation Control (ESO-W) (LJA1-2200C only)

This system selects the elevator in a group that best balances operational efficiency and energy consumption. Priority is given to operational efficiency during peak hours and energy efficiency during non-peak hours.

Through a maximum 10% reduction in energy consumption compared to our conventional system, this system allows building owners to cut energy costs without sacrificing passenger convenience.

Using Energy Wisely

Our long-term commitment to developing energy-efficient elevators has created systems and functions that make intelligent use of power.

Maximizing Operational Efficiency and Minimizing Energy Consumption

Energy-saving Operation – Allocation Control (ESO-W) (LJA1-2200C only)

This system selects the elevator in a group that best balances operational efficiency and energy consumption. Priority is given to operational efficiency during peak hours and energy efficiency during non-peak hours.

Through a maximum 10% reduction in energy consumption compared to our conventional system, this system allows building owners to cut energy costs without sacrificing passenger convenience.
Cooperative Optimization Assignment (ΣAI-2200C)

When a hall call is registered, the algorithm assumes a near-future calls that could require long waits. Through evaluation of the registered hall call and the forecasted call, the best car is assigned. All cars work cooperatively for optimum operation.

Forecasting a Near-future Hall Call to Reduce Long Waits

Cooperative Optimization Assignment (ΣAI-2200C)

When a hall call is registered, the algorithm assumes a near-future calls that could require long waits. Through evaluation of the registered hall call and the forecasted call, the best car is assigned. All cars work cooperatively for optimum operation.

Allocating Passengers to Cars Depending on Destination Floors

Destination Oriented Allocation System (DOAS) (ΣAI-2200C) (Optional)

When a passenger enters a destination floor at a hall, the hall operating panel immediately indicates which car will serve the floor. Because the destination floor is already registered, the passenger does not need to press a button in the car. Furthermore, dispersing passengers by destination prevents congestion in cars and minimizes their waiting and traveling time.
Variable Traveling Speed Elevator System (VSE) (Optional)

With Mitsubishi Electric’s industry-first variable traveling speed elevator system, an elevator can travel faster than its rated speed according to the number of passengers, ultimately reducing waiting and traveling time.

Waiting Time Reduction

According to Mitsubishi Electric’s simulation, waiting time can be reduced up to approximately 15% when VSE is applied.

Traveling Time Reduction

Traveling time can be reduced by approximately 32% when the elevator travels from the bottom to the top floor directly under rapid mode in VSE.

(Conditions)
Travel: 36m, Floor height: 4.0m, 10 floors, Car load: 50%

Variable Traveling Speed Elevator System (VSE) (Optional)

Max Speed and Car Load

- Rated speed (1.0m/sec)
- VSE (1.0, 1.25, 1.5, 1.6m/sec)

The elevator travels faster than the rated speed when the weight difference between the car and the counterweight is small (when the car load rate is approximately 10 to 80%). During the operation, the LCD display shows RAPID MODE.

Efficiency

- Traveling speed reduction: 15%
- Waiting time reduction: 32%

Space-saving

Machine-room-less Elevators

As all equipment is installed within the hoistway, there are fewer restrictions on building design except for the actual space required for the hoistway. Architects and interior designers have more design freedom.

Maximum Speed and Car Load

- Rated speed: 1.0m/sec (1-2 persons)
- VSE: 1.0m/sec (1-2 persons), 1.25m/sec (2-3 persons), 1.5m/sec (3-4 persons), 1.6m/sec (4-5 persons)

[Number of passengers in the car when the maximum number of passengers is 14.]

Note: The Variable Traveling Speed Elevator System is applicable to elevators with a rated speed of 1.0m/sec.
For Safe Boarding

Door Safety Devices
Our reliable safety devices ensure that the doors are clear to open and close. Depending on the type of sensor, the detection area differs. Please refer to page 16 for details.

Emergencies

To ensure passenger safety, our elevators are equipped with functions for emergencies like a power failure, fire or earthquake.

Power failure
Mitsubishi Emergency Landing Device (MELD) (Optional)
Upon power failure, a car automatically moves to the nearest floor using a rechargeable battery to facilitate the safe evacuation of passengers.

Operation by Emergency Power Source—Automatic/Manual (OEPS) (Optional)
Upon power failure, predetermined car(s) use a building’s emergency power supply to move to a specified floor and open the doors for passengers to evacuate. After all cars have arrived, predetermined car(s) resume normal operation.

Fire

Firefighters’ Emergency Operation (FE) (Optional)
When the fire operation switch is activated, the car immediately returns to a predetermined floor. The car then responds only to car calls which facilitate firefighting and rescue operations.

Fire Emergency Return (FER) (Optional)
When a key switch or a building’s fire alarm is activated, all cars immediately return to a specified floor and open the doors to facilitate the safe evacuation of passengers.

Earthquake

Earthquake Emergency Return (EER-P/EER-S) (Optional)
When a primary and/or secondary wave seismic sensor is activated, all cars stop at the nearest floor and park there with the doors open to facilitate the safe evacuation of passengers.
Features (1/2)

EMERGENCY OPERATIONS

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitsubishi Emergency Landing Device (MILD)</td>
<td>Upon power failure, a car equipped with the function automatically moves to and stops at the nearest floor using a rechargeable battery, and the doors open to facilitate the safe evacuation of passengers. (Maximum allowable floor-to-floor distance is 11 meters.)</td>
</tr>
<tr>
<td>Operation by Emergency Power Source (OBP)</td>
<td>Upon power failure, predetermined car(s) use the building's emergency power supply to move to a specified floor, where the doors then open to facilitate the safe evacuation of passengers. After all cars have arrived, predetermined car(s) resume normal operation.</td>
</tr>
<tr>
<td>Fire Emergency Return (FER)</td>
<td>Upon activation of a slow or a building fire alarm, all calls are canceled, all cars immediately return to a specified evacuation floor and the doors open to facilitate the safe evacuation of passengers.</td>
</tr>
<tr>
<td>Firefighters' Emergency Operation (FER)</td>
<td>During a fire, when the fire operation switch is activated, the cars call of a specified car and all hall calls are canceled and the car immediately returns to a predetermined floor. The car then responds only to its car calls which facilitate firefighting and rescue operations.</td>
</tr>
<tr>
<td>Earthquake Emergency Return (EBR, YF)</td>
<td>Upon activation of primary and secondary low-motion sensors, all cars stop at the nearest floor, and park there with the doors open to facilitate the safe evacuation of passengers.</td>
</tr>
<tr>
<td>Supervisory Panel (WP)</td>
<td>Each elevator's status and operation can be remotely monitored and controlled through a panel installed in a building's supervisory room, etc.</td>
</tr>
<tr>
<td>MelEye (WP-WI)</td>
<td>Each elevator's status and operation can be monitored and controlled using advanced Web-based technology which provides an interface through personal computers. Special optional features such as preparation of traffic statistics and analysis are also available.</td>
</tr>
<tr>
<td>Emergency Car Lighting (ECL)</td>
<td>Car lighting which turns on immediately when power fails, providing a minimum level of lighting within the car. (Choice of dry-cell battery or trickle-charge battery.)</td>
</tr>
</tbody>
</table>

DOOR OPERATION FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door Sensor Self-diagnosis (ODDA)</td>
<td>Failure of non-contact door sensors is checked automatically, and if a problem is diagnosed, the door-closing timing is adjusted and the closing speed is reduced to maintain elevator service and ensure passenger safety.</td>
</tr>
<tr>
<td>Automatic Door Speed Control (ADSC)</td>
<td>Door load on each floor, which can depend on the type of hall door, is monitored and adjusted to balance the door speed, thereby making the door speed consistent throughout all floors.</td>
</tr>
<tr>
<td>Automatic Door Open Time Adjustment (ADOT)</td>
<td>The time doors are open can automatically be adjusted, depending on whether the stop was called from the hall or the car, to allow smooth boarding of passengers or loading of baggage.</td>
</tr>
<tr>
<td>Open with Hall Button (OH)</td>
<td>Closing doors can be reopened by pressing the hall button corresponding to the traveling direction of the car.</td>
</tr>
<tr>
<td>Repeated Door-closing (RDC)</td>
<td>Should an obstacle prevent the doors from closing, the doors will repeatedly open and close and the obstacle is cleared from the doorway.</td>
</tr>
<tr>
<td>Door Nudging Feature — With Buzzer (NOG)</td>
<td>A buzzer sounds and the doors slowly close when they have remained open for longer than the preset period. With AAN-B or AAN-L, a beep and voice guidance sound instead of the buzzer.</td>
</tr>
<tr>
<td>Door Load Detector (DLD)</td>
<td>When excessive door load has been detected while opening or closing, the doors immediately reverse.</td>
</tr>
<tr>
<td>Safety Relay (SR)</td>
<td>One or two infrared light beams cover the full width of the doors and close to detect passengers or objects. (Cannot be combined with the multi-beam door sensor or MBSS feature.)</td>
</tr>
<tr>
<td>Extended Door-open Button (DOO-TB)</td>
<td>When the buttons inside a car is pressed, the doors will remain open longer to allow loading and unloading of baggage, a stretcher, etc.</td>
</tr>
<tr>
<td>Safety Edge (SDE)</td>
<td>Sensitive door edge(s) detect passengers or objects during door closing. (Cannot be combined with the MBSS feature.)</td>
</tr>
<tr>
<td>One side (CO, 25 doors)</td>
<td>One or two infrared light beams cover some 1800 mm height of the doors as they close to detect passengers or objects. (Cannot be combined with the SDE or MBSS feature.)</td>
</tr>
<tr>
<td>Both sides (CO, doors only)</td>
<td>Multiple infrared light beams cover some 1800 mm height of the doors as they close to detect passengers or objects. (Cannot be combined with the SR or MBSS feature.)</td>
</tr>
<tr>
<td>Electronic Deform (EDM)</td>
<td>Door open time is minimized using safety relay(s) or multi-beam door sensors that detect passengers boarding or exiting.</td>
</tr>
<tr>
<td>Multi-beam Door Sensor — Signal Type (MBSS)</td>
<td>Multiple infrared light beams cover a door height of approximately 1800 mm to detect passengers or objects as the doors close. Additionally, LED lights on the door edge indicate the door opening/closing and the presence of an obstacle between the doors. (Cannot be combined with any of the following features: SDE, 3D or multi-beam door sensor.)</td>
</tr>
<tr>
<td>Hall Motion Sensor (HMS)</td>
<td>Infrared light is issued to a 3D area near open doors to detect passengers or objects.</td>
</tr>
</tbody>
</table>

Notes: * 1C-2BC: 1 car selector collective - Standard, 1C-3BC: 2 car group control system - Optional
* 2C-2BC: 1 car selector collective - Standard, 2C-3BC: 3 car group control system - Optional
* 3C-2BC: 1 car selector collective - Standard, 3C-3BC: 3 car group control system - Optional
* 4C: 1 car selector collective - Standard, 4C: 2 car group control system - Optional
* 5C: 1 car selector collective - Standard, 5C: 2 car group control system - Optional
* 6C to 12C: 4 to 8 car group control system - Optional
* 15C: 1 car selector collective - Standard, 15C: 3 car group control system - Optional
* 17C: 1 car selector collective - Standard, 17C: 3 car group control system - Optional
* 20C: 1 car selector collective - Standard, 20C: 3 car group control system - Optional
* 25C: 1 car selector collective - Standard, 25C: 3 car group control system - Optional
* 1: Please consult our local agents for the product terms, etc.
Features (2/2)

OPERATIONAL AND SERVICE FEATURES

GROUP CONTROL FEATURES

- Regenerative Converter (GECR)
 - Elevator System (GECR)

- Attendant Service (GAS)

- Return Operation (RET)

- Switch (HOS/HOS-T)

- Secret Call Service (SCS-B)

- Elevator System (VSE)

- Car Cancellation (CC)

- Car Fan Shut Off (CCF)

- Light Lift Off (LLO)

- Automatic AYP (ASY)

- False Call Cancelling (FBC)

- Independent Service (ICS)

- Control Microprocessor (CMO)

- Backup Operation for Group Controller (BOGC)

- Car Fan Shut Off (CFS)

- Up Peak Service (UPS)

- Allocation System (DOAS)

- Down Peak Service (DPS)

- Forced Floor Stop (FFS)

- Main Floor Parking (MP)

- Special Floor Priority Service (SFPS)

- Closer-Car Priority Service (CPS)

- Closest-Car Priority Service (CCPS)

- Corrugated-Covered Service (CCS)

- Bank-separated Separation (BSS)

- VIP Operation (VIP-O)

- Lunchtime Service (LT)

- Main Floor Changeover (MFC)

SIGNAL AND DISPLAY FEATURES

- Hall Information Display (HID)

- Car LCD Position Indicator (CPI)

- Sonic Car Button (SCB)

- Car Arrival Chime (CAC)

- Flashing Hall Lantern (FHL)

- Hall Operating Panel (HOP)

- Hall Call Panel (HCP)

- Zone Car Button — Click Type (ACB)

- Immediate Prediction Indication (API)

- Second Prediction Indication (SPI)

- Voice Guidance System (VGS)

- Auxiliary Car Operating Panel (ACP)

- Communication System (TSP)

- Car LCD Position Indicator (CID)

- Hall LCD Position Indicator (HID-S)

- Car Information Display (CID)

- Hall Information Display (HID)

Notes:
- A: Standard, B: Optional, C: Not applicable
- Special floors, such as floors with VIP rooms or executive rooms, are given higher priority for car allocation when a call is made on those floors. (Cannot be combined with hall position indicators.)
- A buzzer sounds to alert the passengers that the car is overloaded. The doors remain open and the car will not leave that floor until enough passengers exit the car.
- Hall buttons and the cars called by each button can be divided into several groups for independent group control operation to serve special needs or different floors.
- The LCDs for car front return panels show the date and time, car position, travel direction, and elevator status messages.
- The LCDs for car front return panels show the date and time, car position, travel direction, and elevator status messages.
- The LCDs for car front return panels show the date and time, car position, travel direction, and elevator status messages.
- The LCDs for elevators shows the date and time, car position, travel direction, and elevator status messages.
- A click-type car button which emits an electronic beep sound when pressed to indicate that the call has been registered.
- A click-type car button which emits an electronic beep sound when pressed to indicate that the call has been registered.
- A click-type car button which emits an electronic beep sound when pressed to indicate that the call has been registered.
- A click-type car button which emits an electronic beep sound when pressed to indicate that the call has been registered.
- A click-type car button which emits an electronic beep sound when pressed to indicate that the call has been registered.
- A click-type car button which emits an electronic beep sound when pressed to indicate that the call has been registered.
- A click-type car button which emits an electronic beep sound when pressed to indicate that the call has been registered.
- A click-type car button which emits an electronic beep sound when pressed to indicate that the call has been registered.
- A click-type car button which emits an electronic beep sound when pressed to indicate that the call has been registered.
- A click-type car button which emits an electronic beep sound when pressed to indicate that the call has been registered.
- A click-type car button which emits an electronic beep sound when pressed to indicate that the call has been registered.
- A click-type car button which emits an electronic beep sound when pressed to indicate that the call has been registered.
- A click-type car button which emits an electronic beep sound when pressed to indicate that the call has been registered.
- A click-type car button which emits an electronic beep sound when pressed to indicate that the call has been registered.
- A click-type car button which emits an electronic beep sound when pressed to indicate that the call has been registered.
- A click-type car button which emits an electronic beep sound when pressed to indicate that the call has been registered.
- A click-type car button which emits an electronic beep sound when pressed to indicate that the call has been registered.
- A click-type car button which emits an electronic beep sound when pressed to indicate that the call has been registered.
- A click-type car button which emits an electronic beep sound when pressed to indicate that the call has been registered.
- A click-type car button which emits an electronic beep sound when pressed to indicate that the call has been registered.
Basic Specifications

Horizontal Specifications <1-Door 1-Gate & 1-Door 2-Gate>

<table>
<thead>
<tr>
<th>Code</th>
<th>Number of persons</th>
<th>Rated capacity (kg)</th>
<th>Rated speed (m/sec)</th>
<th>Door type</th>
<th>Entrance width (mm)</th>
<th>Counterweight position</th>
<th>Car internal dimensions (mm)</th>
<th>Minimum hoistway dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6</td>
<td>6</td>
<td>450</td>
<td>1.0</td>
<td>25</td>
<td>800</td>
<td>Side</td>
<td>950x1300</td>
<td>1600x1200 1520x1200</td>
</tr>
<tr>
<td>P7</td>
<td>7</td>
<td>550</td>
<td>1.0</td>
<td>25</td>
<td>800</td>
<td>Side</td>
<td>1100x1400</td>
<td>1650x1360 1510x1360</td>
</tr>
<tr>
<td>P8</td>
<td>8</td>
<td>630</td>
<td>1.0</td>
<td>25</td>
<td>800</td>
<td>Side</td>
<td>1100x1400</td>
<td>1650x1800 1510x1800</td>
</tr>
<tr>
<td>P11</td>
<td>11</td>
<td>825</td>
<td>1.0</td>
<td>25</td>
<td>800</td>
<td>Side</td>
<td>1350x1400</td>
<td>2030x1700 1950x1700</td>
</tr>
<tr>
<td>P14</td>
<td>14</td>
<td>1050</td>
<td>1.0</td>
<td>25</td>
<td>800</td>
<td>Side</td>
<td>1600x1400</td>
<td>2350x2070 2210x2070</td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1275</td>
<td>1.0</td>
<td>25</td>
<td>800</td>
<td>Rear</td>
<td>2000x1400</td>
<td>2750x2170 2610x2170</td>
</tr>
<tr>
<td>P18</td>
<td>18</td>
<td>1350</td>
<td>1.0</td>
<td>25</td>
<td>800</td>
<td>Rear</td>
<td>2000x1500</td>
<td>2750x2275 2610x2275</td>
</tr>
<tr>
<td>P21</td>
<td>21</td>
<td>1600</td>
<td>1.0</td>
<td>25</td>
<td>800</td>
<td>Side</td>
<td>1300x1600</td>
<td>2150x2170 2010x2170</td>
</tr>
</tbody>
</table>

Specifications for Variable Traveling Speed Elevator System (Optional)

<1-Door 1-Gate & 1-Door 2-Gate>

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Rated Capacity (kg)</th>
<th>Travel (m)</th>
<th>Minimum overhead (mm)</th>
<th>Minimum pit depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>450</td>
<td>16 1/2</td>
<td>370</td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>1650x1300</td>
<td>16 1/2</td>
<td>370</td>
<td>1400</td>
</tr>
</tbody>
</table>

Hoistway Plan <1-Door 1-Gate & 1-Door 2-Gate>

Elevation <1-Door 1-Gate & 1-Door 2-Gate>

Horizontal Dimensions

- **Vertical Dimensions**

- **Notes:**
 - The Variable Traveling Speed Elevator System (VSE) is applicable for elevators with a rated speed of 1.0m/sec.
 - Exception minimum overhead and pit depth dimensions (OH and PD), specifications shown in tables, “Horizontal Dimensions” and “Vertical Dimensions,” on the pages 19 and 21 are applicable to the Variable Traveling Speed Elevator System.
 - CO: 2-panel center opening doors, 2S: 2-panel side sliding doors.
 - Rated capacity is calculated at 75kg per person, as required by EN81-1.
 - This table shows specifications without the fireproof landing door and counterweight safety.
 - Minimum hoistway dimensions (AH and BH) shown in the table are after waterproofing of the pit and do not include plumb tolerance.
 - CO: 2-panel center opening doors, 2S: 2-panel side sliding doors.
 - Rated speed is calculated at 75kg per person, as required by EN81-1.
 - This table shows specifications without the fireproof landing door and counterweight safety.
 - Minimum hoistway dimensions (AH and BH) shown in the table are after waterproofing of the pit and do not include plumb tolerance.
 - Maximum hoistway dimensions (AH and BH) shown in the table are after waterproofing of the pit and do not include plumb tolerance.
 - This table shows specifications without the fireproof landing door and counterweight safety.
 - The applicable range of the rated capacity may depend on the manufacturing factory. Please consult our local agents for details.

Applicable Standards

NEXILZ-MRL complies with EN81-1. For details of compliance with other national regulations, please consult our local agents.
Basic Specifications

Horizontal Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated speed (m/sec)</th>
<th>Rated capacity (kg)</th>
<th>Door type</th>
<th>Entrance width (mm)</th>
<th>Car internal dimensions (mm)</th>
<th>Minimum hoistway dimensions (mm)</th>
<th>Rated speed (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8</td>
<td>8</td>
<td>1.0 / 1.6 / 1.75</td>
<td>800 Standard</td>
<td>CO</td>
<td>1000x1400</td>
<td>1100x1400</td>
<td>1850x1800</td>
<td>1.75 / 2.0 / 3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>800 Optional</td>
<td>CO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P11</td>
<td>11</td>
<td>1.0 / 1.6 / 1.75</td>
<td>800 Standard</td>
<td>CO</td>
<td>1350x1400</td>
<td>1750x1800</td>
<td>2080x1800</td>
<td>2.0 / 2.5 / 3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>800 Optional</td>
<td>CO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P14</td>
<td>14</td>
<td>1.0 / 1.6 / 1.75</td>
<td>800 Standard</td>
<td>CO</td>
<td>1600x1400</td>
<td>1800x1800</td>
<td>2110x1800</td>
<td>2.0 / 2.5 / 3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>800 Optional</td>
<td>CO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1.0 / 1.6 / 1.75</td>
<td>800 Standard</td>
<td>CO</td>
<td>1200x2300</td>
<td>1650x2800</td>
<td>2215x2982</td>
<td>2.0 / 2.5 / 3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>800 Optional</td>
<td>CO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P21</td>
<td>21</td>
<td>1.0 / 1.6 / 1.75</td>
<td>800 Standard</td>
<td>CO</td>
<td>1400x2400</td>
<td>1750x2800</td>
<td>2415x2982</td>
<td>2.0 / 2.5 / 3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>800 Optional</td>
<td>CO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The layout (position of traction machine, etc.) differs depending on capacity.

Important Information on Elevator Planning

Work Not Included in Elevator Contract

- Architectural finishing of the walls and floors in the vicinity of the entrance hall after installation has been completed.
- Construction of an illuminated, ventilated and waterproofed elevator hoistway.
- A ladder to the elevator pit.
- The provision of the necessary openings and joints.
- Separate beams, when the hoistway dimensions markedly exceed the specifications, and intermediate beams when two or more elevators are installed.
- All other work related to building construction.
- The power receiving panel and the electrical wiring for illumination, as well as the electrical wiring from electrical room to the power receiving panel.
- The laying of conduits and wiring between the elevator pit and the terminating point for the devices installed outside the hoistway, such as the emergency bell, intercom, monitoring and security devices, etc.
- The power consumed in installation work and test operations.
- All the necessary building materials for grouting in of brackets, bolts, etc.
- The test provision and subsequent alteration as required, and eventual removal of the scaffolding as required by the elevator contractor, and any other protection of the work as may be required during the process.
- The provision of a suitable, locked space for the storage of elevator equipment and tools during elevator installation.
- The security system, such as a card reader, connected to Mitsubishi Electric’s elevator controller, when supplied by the building owner or general contractor.

Work responsibilities in installation and construction shall be determined according to local laws. Please consult our local agents for details.

Elevator Site Requirements

- The temperature of the elevator hoistway shall be below 40°C.
- The following conditions are required for maintaining elevator performance:
 a. The relative humidity shall be below 90% on a monthly average and below 95% on a daily average.
 b. Prevention shall be provided against icing and condensation occurring due to a rapid drop in the temperature in the elevator hoistway.
 c. The elevator hoistway shall be finished with mortar or other materials so as to prevent concrete dust.
- Voltage fluctuation shall be within a range of ±4% to ±10%.

Ordering Information

Please include the following information when ordering or requesting estimates:

- The desired number of units, speed and loading capacity.
- The number of stops or number of floors to be served.
- The total elevator travel and each floor-to-floor height.
- Operation system.
- Selected design and size of car.
- Entrance design.
- Signal equipment.
- A sketch of the part of the building where the elevators are to be installed.
- The voltage, number of phases, and frequency of the power source for the motor and lighting.

Mitsubishi Electric Corporation Inazawa Works has acquired ISO 9001 certification from the International Organization for Standardization based on a review of quality management.

Mitsubishi Elevator Asia Co., Ltd. has acquired ISO 9001 certification from the International Organization for Standardization based on a review of quality management.

The plant has also acquired environmental management system standard ISO 14001 certification.

Applicable Standards

NEXIEZ-MRL complies with EN81-1. For details of compliance with other national regulations, please consult our local agents.
Eco Changes is the Mitsubishi Electric Group’s environmental statement, and expresses the Group’s stance on environmental management. Through a wide range of businesses, we are helping contribute to the realization of a sustainable society.